.. _RegGrammar: .. raw:: html .. |--| unicode:: U+2013 .. en dash .. |---| unicode:: U+2014 .. em dash, trimming surrounding whitespace :trim: .. This file is part of the OpenDSA eTextbook project. See .. http://algoviz.org/OpenDSA for more details. .. Copyright (c) 2012-2016 by the OpenDSA Project Contributors, and .. distributed under an MIT open source license. .. avmetadata:: :author: Susan Rodger and Cliff Shaffer :requires: :satisfies: Regular Grammar :topic: Finite Automata Regular Grammars ================ Regular Grammars ---------------- Here is another way to describe a regular language. Grammar :math:`G = (V, T, S, P)` .. math:: \begin{array}{lll} & & \mbox{represented by} \\ V & \mbox{variables (nonterminals)} & A,B,..,Z \\ T & \mbox{terminals} & a,b,..,z,0,1,...9 \\ S & \mbox{start symbol} \\ P & \mbox{productions (rules)}\\ \end{array} :math:`V`, :math:`T`, and :math:`P` are finite sets. :term:`Right-linear grammar`: .. math:: \begin{array}{c} \mbox{all productions of form} \\ A \rightarrow xB \\ A \rightarrow x \\ \mbox{where}\ A,B \in V, x \in T^* \end{array} Note: :math:`x` is a string of length 0 or more. :term:`Left-linear grammar`: .. math:: \begin{array}{c} \mbox{all productions of form} \\ A \rightarrow Bx \\ A \rightarrow x \\ \mbox{where}\ A,B \in V, x \in T^* \end{array} **Definition:** A :term:`regular grammar` is a right-linear or left-linear grammar. .. note:: There is a more restrictive definition in which the length of :math:`x` is :math:`\leq 1`. (Exercise in book.) .. topic:: Example .. math:: \begin{eqnarray*} G &=& (\{S\},\{a,b\},S,P),\\ P &=& \\ &&S \rightarrow abS \\ &&S \rightarrow \lambda \\ &&S \rightarrow Sab \\ \end{eqnarray*} The language is :math:`(ab)*`. However, cannot mix left/right rules! So this is not a regular grammar. .. topic:: Example .. math:: \begin{eqnarray*} G &=& (\{S\},\{a,b\},S,P),\\ P &=& \\ &&S \rightarrow aB | bS | \lambda \\ &&B \rightarrow aS | bB \\ \end{eqnarray*} This is a right linear grammar representing the language :math:`L = \{ \mbox{strings with an even number of a's}\}, \Sigma = \{a,b\}` Our Next Step ~~~~~~~~~~~~~ | What we have already done: | Definition: DFA represents regular language | Theorem: NFA :math:`\Longleftrightarrow` DFA | Theorem: RE :math:`\Longleftrightarrow` NFA | What we will do next: | Theorem: DFA :math:`\Longleftrightarrow` regular grammar NFA from Regular Grammar ~~~~~~~~~~~~~~~~~~~~~~~~ **Theorem:** L is a regular language if and only if :math:`\exists` regular grammar G such that :math:`L = L(G)`. | (Doing here for RR grammar, see book for proof sketch for LR grammar.) | (:math:`\Longleftarrow`) Given a regular grammar G, Construct NFA M such that :math:`L(G)=L(M)` | Make a state for each non-terminal. | Make a transition on each terminal in that production rule. | Make it final if there is a production without non-terminals. | For rules with multiple terminals, need intermediate states. .. topic:: Example | :math:`S \rightarrow aB | bS | \lambda` | :math:`B \rightarrow aS | bB` | | This is a right linear grammar representing the language | :math:`L = \{` strings with an even number of a's :math:`\}, \Sigma = \{a,b\}` .. odsafig:: Images/strgtonfa.png :width: 200 :align: center :capalign: justify :figwidth: 90% :alt: strgtonfa What about a rule like :math:`S \rightarrow abB`? Make two states (S to intermediate state on a, then intermediate state to B on b). Or :math:`S \rightarrow ab`? Make two states (S to intermediate state on a, then intermediate state to an accepting state on B. Right-linear Regular Grammar from DFA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Theorem:** L is a regular language iff :math:`\exists` regular grammar G such that :math:`L = L(G)`. (:math:`\Longrightarrow`) Given a DFA :math:`M`, construct regular grammar :math:`G` such that :math:`L(G)=L(M)` | The process is pretty much the same as when we made an NFA from RRG: | Each DFA state gets a non-terminal. | Each transition gets a production rule. Construct the Regular Grammar for the NFA .. odsafig:: Images/stnfatorg.png :width: 200 :align: center :capalign: justify :figwidth: 90% :alt: stnfatorg | :math:`G = (\{S,B\},\{a,b\},S,P)`, | :math:`P =` | :math:`Q0 \rightarrow a Q1` | :math:`Q1 \rightarrow a Q0 | b Q1 | \lambda` Something to Think About ~~~~~~~~~~~~~~~~~~~~~~~~ .. topic:: Example :math:`L = \{a^nb^n \mid n>0\}` Is language :math:`L` regular? Can you draw a DFA, regular expression, or Regular grammar for this language? Consider this grammar: :math:`S \rightarrow aSb \mid ab` Nice and easy... but this grammar is not regular! We will come back to this question later.