Close
Register
Close Window

CSC 201 Data Structures

Chapter 6 Binary Trees

Show Source |    | About   «  6.13. Huffman Coding   ::   Contents   ::   6.15. Balanced Trees  »

6.14. Binary Search Trees

6.14.1. Binary Search Trees

6.14.1.1. Binary Search Trees

6.14.1.2. BST as a Dictionary (1)

6.14.1.3. BST as a Dictionary (2)

6.14.1.4. BST findhelp

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

6.14.1.5. BST inserthelp

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

6.14.1.6. BST deletemax

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

6.14.1.7. BST removehelp

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

6.14.1.8. .

.

6.14.1.9. BST Analysis

Find: \(O(d)\)

Insert: \(O(d)\)

Delete: \(O(d)\)

\(d =\) depth of the tree

\(d\) is \(O(\log n)\) if the tree is balanced.

What is the worst case cost? When?

   «  6.13. Huffman Coding   ::   Contents   ::   6.15. Balanced Trees  »

nsf
Close Window