.. _Math: .. raw:: html .. |--| unicode:: U+2013 .. en dash .. |---| unicode:: U+2014 .. em dash, trimming surrounding whitespace :trim: .. This file is part of the OpenDSA eTextbook project. See .. http://opendsa.org for more details. .. Copyright (c) 2012-2020 by the OpenDSA Project Contributors, and .. distributed under an MIT open source license. .. avmetadata:: :author: Cliff Shaffer =============== Math Background =============== Math Background --------------- Set Notation ~~~~~~~~~~~~ | **Set**: A collection of distinguishable members. No concept of duplicates, no concept of order. | Be familiar with the usual stuff (union intersection, membership, subset, set size. | **Powerset**: All subsets of a set (including the set itself, and the empty set): :math:`2^S` if there are :math:`S` elements in the set. | **Bag**: Elements are distinishable even with same value, but there is no concept of order. | **Sequence**: Distingishable elements in some order (can have duplicates). Set Relations ~~~~~~~~~~~~~ | A **relation** R over set S is a set of ordered pairs from S. * :math:`R` is :term:`reflexive` if :math:`aRa` for all :math:`a \in \mathbf{S}`. * :math:`R` is :term:`irreflexive` if :math:`aRa` is not true for all :math:`a \in \mathbf{S}`. * :math:`R` is :term:`symmetric` if whenever :math:`aRb`, then :math:`bRa`, for all :math:`a, b \in \mathbf{S}`. * :math:`R` is :term:`antisymmetric` if whenever :math:`aRb` and :math:`bRa`, then :math:`a = b`, for all :math:`a, b \in \mathbf{S}`. * :math:`R` is :term:`transitive` if whenever :math:`aRb` and :math:`bRc`, then :math:`aRc`, for all :math:`a, b, c \in \mathbf{S}`. Equivalence Relations ~~~~~~~~~~~~~~~~~~~~~ | R is an **equivalence relation** on set S if it is reflexive, symmetric, and transitive. | An equivalence relation can be used to partition a set into **equivalence classes**. | A **partition** of a set :math:`\mathbf{S}` is a collection of subsets that are **disjoint** from each other and whose union is :math:`\mathbf{S}`. | Example: **Modulus** defines an equivalence relation. Total vs. Partial Order ~~~~~~~~~~~~~~~~~~~~~~~ | A binary relation is called a **partial order** if it is antisymmetric and transitive. | If the relation is reflexive, it is called a **non-strict partial order**. | If the relation is irreflexive, it is called a **strict partial order**. | If every pair of distinct elements in a partial order are comparable, then the order is called a **total order**. | :math:`<` and :math:`\leq` are total orders. Subset is a partial order. Miscellaneous Notation ~~~~~~~~~~~~~~~~~~~~~~ | Factorial function | A **permutation** of a sequence :math:`\mathbf{S}` is simply the members of :math:`\mathbf{S}` arranged in some order. For :math:`|S|` elements, there are :math:`|S|!` permuations. | **Mod function**: Returns the remainder of an integer division. Sometimes written :math:`n \bmod m` in mathematical expressions, the syntax in many programming languages is ``n % m``. Logarithms ~~~~~~~~~~ | To store codes for :math:`n` objects required :math:`\log n` bits. :math:`n` bits can represent :math:`2^n` objects | You can cut :math:`n` objects in half :math:`\log n` times | :math:`\log (nm) = \log n + \log m`. | :math:`\log (n/m) = \log n - \log m`. | :math:`\log (n^r) = r \log n`. | :math:`\log_a n = \log_b n / \log_b a`. | :math:`n = 2^{\log_2 n}` Summations and Recurrences ~~~~~~~~~~~~~~~~~~~~~~~~~~ .. math:: \sum_{i = 1}^{n} i &=& \frac{n (n+1)}{2}. .. math:: \sum_{i = 1}^{n} \frac{1}{2^i} &=& 1 - \frac{1}{2^n}, .. math:: \sum_{i = 0}^{n} 2^i &=& 2^{n+1} - 1. | Factorial: .. math:: n! = (n-1)! \cdot n\ \mbox{for}\ n>1; \quad 1! = 0! = 1. Estimation Techniques ~~~~~~~~~~~~~~~~~~~~~ | Known as "back of the envelope" or "back of the napkin" calculation | 1. Determine the major parameters that affect the problem. | 2. Define an equation that relates the parameters to the problem. | 3. Select values for the parameters, and apply the equation to yield an estimated solution. Estimation Example ~~~~~~~~~~~~~~~~~~ | How many library bookcasese does it take to store books totalling one million pages? | Estimate | - Pages/inch | - Feet/shelf | - Shelves/bookcase