Close
Register
Close Window

CS4114 Formal Languages and Automata

Chapter 4 Regular Languages

Show Source |    | About   «  4.3. More Regular Expressions Exercises   ::   Contents   ::   4.5. Regular Grammars  »

4.4. Regular Grammars

4.4.1. Introduction to Regular Grammars

Regular grammars are another way to describe regular languages. Recall that a grammar is made of of terminals, variables, and production rule. As the name implies, a regular grammar is a special type of grammar (we will see plenty of grammars later that are not regular). Which begs the question: What makes a grammar regular?

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

What we have already done this semester:
Definition: DFA represents regular language
Theorem: NFA \(\Longleftrightarrow\) DFA
Theorem: RegEx \(\Longleftrightarrow\) NFA
What we will do next:
Theorem: DFA \(\Longleftrightarrow\) regular grammar

Of course, this will mean that DFAs, NFAs, REs, regular languages, and regular grammars all have exactly the same power. By this, we mean that DFAs, NFAs, Regular Expressions, and Regular Grammars all can recognize, or if you perfer they can all represent, exactly the same set of languages: the regular languages.

4.4.2. Converting Regular Grammars to NFAs

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

4.4.3. Converting NFAs to Regular Grammars

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

4.4.4. Converting between Left-linear and Right-linear Grammars

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

4.4.5. RegEx and Regular Grammars

Settings

Proficient Saving... Error Saving
Server Error
Resubmit


Settings

Proficient Saving... Error Saving
Server Error
Resubmit

4.4.6. Something to Think About

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

   «  4.3. More Regular Expressions Exercises   ::   Contents   ::   4.5. Regular Grammars  »

nsf
Close Window