Close
Close Window

CS4114 Formal Languages and Automata

Chapter 2 Mathematical Background

Show Source |    | About   «  2.3. Mathematical Proof Techniques   ::   Contents   ::   3.1. DFA: Deterministic Finite Acceptor  »

2.4. Mathematical Proof Techniques

2.4.1. Mathematical Proof Types

1 / 22 Settings
<<<>

In this module, we will learn about Mathematical proof techniques.

Proficient Saving... Error Saving
Server Error
Resubmit

2.4.2. Mathematical Induction

1 / 24 Settings
<<<>

This module will continue discussing the mathematical proof techniques.

Proficient Saving... Error Saving
Server Error
Resubmit

2.4.3. Induction Proof Examples

1 / 17 Settings
<<<>

This module will provide more examples for Mathematical Induction proofs.

Proficient Saving... Error Saving
Server Error
Resubmit


1 / 20 Settings
<<<>

Some times, reducing the solution from size of n to n-1 makes prove a theorem more easily. Another advantage to thinking in terms of 'reducing from n' rather than 'building up from n−1' is that reducing is more like what we do when we write a recursive function. In recursion, we would naturally compute some function of n by calling the function (recursively) on n−1 and then using the result to compute the value for n.

Created with Raphaël 2.1.2
Proficient Saving... Error Saving
Server Error
Resubmit


1 / 14 Settings
<<<>

This Module provides an example that shows how induction can be used to prove that a recursive function produces the correct result.

Proficient Saving... Error Saving
Server Error
Resubmit

   «  2.3. Mathematical Proof Techniques   ::   Contents   ::   3.1. DFA: Deterministic Finite Acceptor  »

nsf
Close Window